a^e是什么意思?
a^e是意思:矩阵A由单位矩阵E做某种变换。
(A,E)是由矩阵A和矩阵E并列起来构成的一个大的矩阵,线性代数中往往对(A,E)进行初等行变换来求矩阵A的逆矩阵(前提是A是方阵,且可逆),有时化二次型为标准型时,也用到这样的矩阵。
矩阵
高等代数学中的常见工具,也常见于统计分析等应用数学学科中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
线性代数里的E是什么意思?
一般是指单位矩阵
就是对角线都为1,其它元素都是0的方阵
它的性质就是左乘右乘任何别的矩阵都是原来那个矩阵,挺像实数中的1
矩阵e3等于多少
等于001。
单位矩阵用I或者E表示,就是主对角线上是1,其他位置都是0,以此类推e1=100,e2=010,e3=001。
其中E3是一个3x3单位矩阵。
线性代数,A的特征值与A的伴随矩阵的特征值有什么关系?怎么推出来的?
当A可逆时, 若 λ是A的特征值, α 是A的属于特征值λ的特征向量;则 |A| / λ 是 A*的特征值, α 仍是A*的属于特征值 |A| / λ 的特征向量。
设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。
式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0。
设A是数域P上的一个n阶矩阵,λ是一个未知量,
称为A的特征多项式,记¦(λ)=|λE-A|,是一个P上的关于λ的n次多项式,E是单位矩阵。
¦(λ)=|λE-A|=λ+a1λ+…+an= 0是一个n次代数方程,称为A的特征方程。特征方程¦(λ)=|λE-A|=0的根(如:λ0)称为A的特征根(或特征值)。n次代数方程在复数域内有且仅有n个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。
以A的特征值λ0代入(λE-A)X=θ,得方程组(λ0E-A)X=θ,是一个齐次方程组,称为A的关于λ0的特征方程组。因为|λ0E-A|=0,(λ0E-A)X=θ必存在非零解 , 称为A的属于λ0的特征向量。所有λ0的特征向量全体构成了λ0的特征向量空间。
扩展资料:
性质1:n阶方阵A=(aij)的所有特征根为λ1,λ2,…,λn(包括重根),则:
性质2:若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。
性质3:若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。
性质4:设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。
如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν
其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。
若B可逆,则原关系式可以写作 ,也即标准的特征值问题。当B为非可逆矩阵(无法进行逆变换)时,广义特征值问题应该以其原始表述来求解。
如果A和B是实对称矩阵,则特征值为实数。这在上面的第二种等价关系式表述中并不明显,因为 A矩阵未必是对称的。
参考资料:百度百科——矩阵特征值