平行四边形的定义是什么?
定义:两组对边分别平行的四边形叫做平行四边形,
特点:对边平行,对边相等,对角相等,对角线互相平分,
平行四边形的任何一边都可以做底,
从底上作任意一点,向对边作垂线,
这点与垂足之间的距离就是高。
平行四边形的定义
平行四边形的定义:在同一平面内有两组对边分别平行的四边形叫做平行四边形.
平行四边形的定义、性质:
(1)平行四边形对边平行且相等.
(2)平行四边形两条对角线互相平分.(菱形和正方形)
(3)平行四边形的对角相等,两邻角互补
(4)连接任意四边形各边的中点所得图形是平行四边形.(推论)
(5)平行四边形的面积等于底和高的积.(可视为矩形)
(6)平行四边形是旋转对称图形,旋转中心是两条对角线的交点.
(7)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形.
(8)平行四边形是中心对称图形,对称中心是两对角线的交点.
(9)一般的平行四边形不是轴对称图形,菱形是轴对称图形.
(10)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和(可用余弦定理证明).
(11)平行四边形对角线把平行四边形面积分成四等分.
判定:
(1)两组对边分别相等的四边形是平行四边形;
(2)对角线互相平分的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
(4)两组对边分别平行的四边形是平行四边形;
(5)两组对角分别相等的四边形是平行四边形;
(6)一组对边平行一组对角线互相平分的四边形是平行四边形;
(7)一组对边平行一组对角相等的四边形是平行四边形;
什么叫做平行四边形
两组对边分别平行的四边形叫做平行四边形。
平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。
在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。 平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
判定:
1、两组对边分别平行的四边形是平行四边形(定义判定法);
2、一组对边平行且相等的四边形是平行四边形;
3、两组对边分别相等的四边形是平行四边形;
4、两组对角分别相等的四边形是平行四边形(两组对边平行判定);
5、对角线互相平分的四边形是平行四边形。
补充:条件3仅在平面四边形时成立,如果不是平面四边形,即使是两组对边分别相等的四边形,也不是平行四边形。
扩展资料
性质:
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。(简述为“平行四边形的两组对边分别相等”)
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。(简述为“平行四边形的两组对角分别相等” )
(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。(简述为“平行四边形的邻角互补”)
(4)夹在两条平行线间的平行的高相等。(简述为“平行线间的高距离处处相等”)
参考资料来源:百度百科-平行四边形
什么叫平行四边形?
由四条边组成的图形就是四边形。这句话是错误的。
由不在同一直线上的不交叉的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形。
四边形定义中明确的指出了要是封闭的图形,所以题目中命题缺少条件。故这个命题是错误的。
扩展资料:
四边形的分类:
1、凸四边形
四个顶点在同一平面内,对边不相交且作出一边所在直线,其余各边均在其同侧。
2、凹四边形
凹四边形四个顶点在同一平面内,对边不相交且作出一边所在直线,其余各边有些在其异侧。
四边形的性质:
四边形不具有三角形的稳定性,易于变形。但正是由于四边形不稳定具有的活动性,使其在生活中有广泛的应用,如拉伸门等拉伸、折叠结构。
平行四边形的性质:
(1)连接任意四边形各边的中点所得图形是平行四边形。
(2)平行四边形的面积等于底和高的积。
(3)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(4)平行四边形是中心对称图形,对称中心是两对角线的交点.
(5)平行四边形不是轴对称图形,但平行四边形是中心对称图形。矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。
什么是平行四边形
平行四边形:两组对边分别平行的四边形叫做平行四边形菱形:一组邻边相等的平行四边形是菱形;四边都相等的四边形是菱形。根据菱形和平行四边形的定义和性质,两者的区别有以下几点。1、菱形邻边相等,平行四边形邻边不一定相等。2、菱形对角线平分一组对角,平行四边形的对角线不一定平分对角。3、菱形的两条对角线互相垂直平分,平行四边形对角线不一定互相垂直平分。4、菱形的四条边相等,平行四边形的四条边不一定相等。5、菱形是轴对称图形、中心对称图形,平行四边形不是。6、菱形的面积是两条对角线乘积的一半,平行四边形面积是底乘高。
什么是平行四边形的定义
定义:两组对边分别平行的四边形叫做平行四边形。1、平行四边形属于平面图形。2、平行四边形属于四边形。3、平行四边形属于中心对称图形。平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。
平行四边形的对边是平行的(根据定义),因此永远不会相交。
平行四边形的面积是由其对角线之一创建的三角形的面积的两倍。
平行四边形的面积也等于两个相邻边的矢量交叉乘积的大小。
任何通过平行四边形中点的线将该区域平分。
任何非简并仿射变换都采用平行四边形的平行四边形。
平行四边形具有2阶(至180°)的旋转对称性(如果是正方形则为4阶)。如果它也具有两行反射对称性,那么它必须是菱形或长方形(非矩形矩形)。如果它有四行反射对称,它是一个正方形。
平行四边形的周长为2(a+b),其中a和b为相邻边的长度。
与任何其他凸多边形不同,平行四边形不能刻在任何小于其面积的两倍的三角形。
在平行四边形的内侧或外部构造的四个正方形的中心是正方形的顶点。
如果与平行四边形平行的两条线与对角线并行构成,则在该对角线的相对侧上形成的平行四边形面积相等。
平行四边形的对角线将其分成四个相等面积的三角形。