什么叫做正交矩阵
什么叫做正交矩阵?正交矩阵是方块矩阵,行向量和列向量皆为正交的单位向量。
行向量皆为正交的单位向量,任意两行正交就是两行点乘结果为0,而因为是单位向量,所以任意行点乘自己结果为1。
对于3x3正交矩阵,每行是一个3维向量,两个3维向量正交的几何意义就是这两个向量相互垂直。
所以3x3正交矩阵的三行可以理解为一个3D坐标系里的三个坐标轴,下面是3*3正交矩阵M,
x1,x2,x3,//x轴y1,y2,y3,//y轴z1,z2,z3,//z轴
单位矩阵表示的三个坐标轴就是笛卡尔坐标系里的x,y,z轴:
1,0,0,//x轴0,1,0,//y轴0,0,1,//z轴
一个向量乘以3x3正交矩阵的几何意义就是把这个向量从当前坐标系变换到这个矩阵所表示的坐标系里,比如下面的矩阵M1,
0,1,0,1,0,0,0,0,1,
一个向量(1,2,3)右乘这个矩阵M1得到新的向量(2,1,3),就是把原向量从原坐标系变换到一个新的坐标系。
新坐标系的x轴在原坐标系里是(0,1,0),即落在原坐标系的y轴上,
新坐标系就是把原坐标系的x和y轴对调,所以这个正交矩阵M1作用于向量(1,2,3)后把向量的x和y分量对调了。
正交矩阵的定义“行向量和列向量皆为正交的单位向量”带来了另一个好处:正交矩阵的转置就是正交矩阵的逆,比普通矩阵求逆矩阵简单多了。
什么是正交矩阵 举个例子,说明特征,不要定义.
如果:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵
例如举一个最简单的例子
1 0 1 0
矩阵A:0 1 A的转置:0 1 此时 AA'=E
故A本身是正交矩阵
由于AA'=E 由逆矩阵定义 若AB=E 则B为A的逆矩阵 可以知道 A'为A的逆矩阵
也就是说正交矩阵本身必然是可逆矩阵
即
若A是正交矩阵则A的n个行(列)向量是n维向量空间的一组标准正交基【即线性不相关】
什么是正交矩阵?
如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。
正交矩阵是实数特殊化的酉矩阵,因此总是属于正规矩阵。尽管我们在这里只考虑实数矩阵,但这个定义可用于其元素来自任何域的矩阵。正交矩阵毕竟是从内积自然引出的,所以对于复数的矩阵这导致了归一要求。
实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但也存在一种复正交矩阵,这种复正交矩阵不是酉矩阵。
矩阵性质:
实数方块矩阵是正交的,当且仅当它的列形成了带有普通欧几里得点积的欧几里得空间R的正交规范基,它为真当且仅当它的行形成R的正交基。假设带有正交(非正交规范)列的矩阵叫正交矩阵可能是诱人的,但是这种矩阵没有特殊价值而没有特殊名字;他们只是MM=D,D是对角矩阵。
任何正交矩阵的行列式是+1或−1。这可从关于行列式的如下基本事实得出:(注:反过来不是真的;有+1行列式不保证正交性,即使带有正交列,可由下列反例证实。)
矩阵正交的定义
矩阵相互正交是两个向量正交,两个向量正交是指它们的内积等于零,两个向量的内积是它们对应分量的乘积之和。
几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。 扩展资料
在三维向量空间中, 两个向量的内积如果是零, 那么就说这两个向量是正交的。正交最早出现于三维空间中的`向量分析。 换句话说, 两个向量正交意味着它们是相互垂直的。若向量α与β正交,则记为α⊥β。
1、方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;
2、方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;
3、A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;
4、A的列向量组也是正交单位向量组;
5、正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。
矩阵相互正交是什么意思?
矩阵相互正交是两个向量正交,两个向量正交是指它们的内积等于零,两个向量的内积是它们对应分量的乘积之和。
几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。
在三维向量空间中, 两个向量的内积如果是零, 那么就说这两个向量是正交的。正交最早出现于三维空间中的向量分析。 换句话说, 两个向量正交意味着它们是相互垂直的。若向量α与β正交,则记为α⊥β。
扩展资料
几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。
因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
参考资料来源:百度百科-正交向量
什么是正交矩阵
什么是正交矩阵如下:
定义
编辑 播报
如果:AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”。)或ATA=E,则n阶实矩阵A称为正交矩阵,若A为正交阵,则满足以下条件 [2] [3] :
1)AT是正交矩阵
2)(E为单位矩阵)
3)AT的各行是单位向量且两两正交
4)AT的各列是单位向量且两两正交
5)(Ax,Ay)=(x,y)x,y∈R
6)|A|=1或-1
7)
8)正交矩阵通常用字母Q表示。
(9)举例:
若A=[r11r12r13;r21r22r23;r31r32r33],则有:
定理
在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵,如果正交矩阵的行列式为+1,则称之为特殊正交矩阵。
1.方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;
2.方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;
3.A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;
4.A的列向量组也是正交单位向量组。
5.正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵